"); //-->
本文分享自天翼云开发者社区《Flink 与Flink可视化平台StreamPark教程(CDC功能)》,作者:l****n
flinkCDC功能是面向binlog进行同步、对数据的增删改进行同步的工具,能够实现对数据的动态监听。目前其实现原理主要为监听数据源的binlog对数据的变化有所感知。
<!-- flink connector cdc -->
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>${flink.sql.connector.cdc.version}</version>
</dependency>
,在本实例中,选择2.2.1版本的mysqlcdc进行演示。
1.0.0 | 1.11.* |
1.1.0 | 1.11.* |
1.2.0 | 1.12.* |
1.3.0 | 1.12.* |
1.4.0 | 1.13.* |
2.0.* | 1.13.* |
2.1.* | 1.13.* |
2.2.* | 1.13., 1.14. |
2.3.* | 1.13., 1.14., 1.15.*, 1.16.0 |
package cn.ctyun.demo.api.watermark;import cn.ctyun.demo.api.utils.TransformUtil;import com.alibaba.fastjson.JSONObject;import com.ververica.cdc.connectors.mysql.source.MySqlSource;import com.ververica.cdc.connectors.mysql.table.StartupOptions;import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;import org.apache.flink.api.common.eventtime.WatermarkStrategy;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import java.time.Duration;public class ViewContentStreamWithoutWaterMark { public static DataStream<JSONObject> getViewContentDataStream(StreamExecutionEnvironment env){ // 1.创建Flink-MySQL-CDC的Source MySqlSource<String> viewContentSouce = MySqlSource.<String>builder() .hostname("49.7.189.190") .port(3307) .username("root") .password("Adm@163.comCdc") .databaseList("test_cdc_source") .tableList("test_cdc_source.view_content") .startupOptions(StartupOptions.initial()) .deserializer(new JsonDebeziumDeserializationSchema()) .serverTimeZone("Asia/Shanghai") .build(); // 2.使用CDC Source从MySQL读取数据 DataStreamSource<String> mysqlDataStreamSource = env.fromSource( viewContentSouce, WatermarkStrategy.noWatermarks(), "ViewContentStreamNoWatermark Source" ); // 3.转换为指定格式 return mysqlDataStreamSource.map(TransformUtil::formatResult); }}
flinksql操作,能够简化大量操作,具体如下代码所示。在这里我们只需要提供简单的sql语句即可完成对mysql数据源的动态读取。通过指定连接器类型为'connector' = 'mysql-cdc'
package cn.ctyun.demo.flinksql;import cn.ctyun.demo.flinksql.udf.HashScalarFunction;import org.apache.flink.api.java.utils.ParameterTool;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.Table;import org.apache.flink.table.api.TableResult;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;/** * @classname: ReadFromCdc * @description: 通过cdc获取数据变化进行输入 * @author: Liu Xinyuan * @create: 2023-04-12 15:09 **/public class FlinkSqlReadFromCdc { public static void main(String[] args) throws Exception { ParameterTool parameterTool = ParameterTool.fromArgs(args); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); env.disableOperatorChaining(); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env); // 1. 创建读取表,使用mysql-cdc进行,注意此时应标记主键 String source_ddl = "CREATE TABLE UserSource (" + " id INT, " + " name VARCHAR, " + " phone VARCHAR, " + " sex INT, " + " primary key (id) not enforced" + ") WITH (" + " 'connector' = 'mysql-cdc'," + " 'hostname' = '*******'," + " 'port' = '3307'," + " 'username' = '" + parameterTool.get("user") + "', " + " 'password' = '" + parameterTool.get("passwd") + "'" + " 'database-name' = 'test_cdc_source'," + " 'table-name' = 'test_user_table'," + " 'debezium.log.mining.continuous.mine'='true',"+ " 'debezium.log.mining.strategy'='online_catalog', " + " 'debezium.database.tablename.case.insensitive'='false',"+ " 'jdbc.properties.useSSL' = 'false' ," + " 'scan.startup.mode' = 'initial')"; tableEnv.executeSql(source_ddl); // 2. 创建写出表,使用mysql进行 String sink_ddl = "CREATE TABLE UserSink (" + " id INT, " + " name VARCHAR, " + " phone VARCHAR, " + " sex INT, " + " primary key (id) not enforced" + ") WITH (" + " 'connector.type' = 'jdbc', " + " 'connector.url' = 'jdbc:mysql://******:3306/flink_test_sink?useSSL=false', " + " 'connector.table' = 'test_user_table', " + " 'connector.username' = '" + parameterTool.get("sinkUser") + "', " + " 'connector.password' = '" + parameterTool.get("sinkPasswd") + "'" + " 'connector.write.flush.max-rows' = '1'" + ")"; tableEnv.executeSql(sink_ddl); // 3.简单的数据清洗,将电话号码进行hash掩码 tableEnv.createTemporarySystemFunction("MyHASH", HashScalarFunction.class); Table maskedTable = tableEnv.sqlQuery("SELECT id, name, MyHASH(phone) as phone, sex FROM UserSource"); tableEnv.createTemporaryView("MaskedUserInfo", maskedTable); // 4.使用insert语句进行数据输出,在这里进行一定地清洗 String insertSql = "INSERT INTO UserSink SELECT * FROM MaskedUserInfo"; TableResult tableResult = tableEnv.executeSql(insertSql); tableResult.print(); }}
'scan.startup.mode' = 'initial'此处是cdc的关键所在,MySQL CDC 消费者可选的启动模式, 合法的模式为 "initial","earliest-offset","latest-offset","specific-offset" 和 "timestamp"
String source_ddl = "CREATE TABLE UserSource (" + " id INT, " + " name VARCHAR, " + " phone VARCHAR, " + " sex INT, " + " primary key (id) not enforced" + ") WITH (" + " 'connector' = 'mysql-cdc'," + " 'hostname' = '******'," + " 'port' = '3307'," + " 'username' = '" + parameterTool.get("user") + "', " + " 'password' = '" + parameterTool.get("passwd") + "'" + " 'database-name' = 'test_cdc_source'," + " 'table-name' = 'test_user_table'," + " 'debezium.log.mining.continuous.mine'='true',"+ " 'debezium.log.mining.strategy'='online_catalog', " + " 'debezium.database.tablename.case.insensitive'='false',"+ " 'jdbc.properties.useSSL' = 'false' ," + " 'scan.startup.mode' = 'initial')";
启用后,整个流程为对其中的数据增量同步,由于我们使用的是initial模式,因此我们的数据在任务启动的时候,首先进行了一次全量同步,全量地将信息同步,并且进行了掩码操作。
后续如果添加新的信息也会进行同步,删除亦然。
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。