"); //-->
qat_nv12.bc/quantized_nv12.bc:插入 NV12 预处理节点的伪量化 / 定点 BC 模型
qat_feat.bc/quantized_feat.bc:未插入 NV12 预处理节点的伪量化 / 定点 BC 模型
resizer_input = ["resize"] # 部署时数据来源于resizer的输入节点名称列表 pyramid_input = ["pym"] # 部署时数据来源于pyramid的输入节点名称列表 # 为和历史版本保持兼容,建议使用flatten_inputs将输入展开,如下代码同时兼容新旧版本模型: for input in func.flatten_inputs[::-1]: if input.name in pyramid_input: # pyramid&resizer 只支持 NHWC 的 input layout,若原始输入layout为NHWC,则无需插入transpose node = input.insert_transpose(permutes=[0, 3, 1, 2]) # 插入前处理节点,具体可参考下一节的说明 node = node.insert_image_preprocess(mode=None, divisor=1, mean=[128, 128, 128], std=[128, 128, 128]) node.insert_image_convert("nv12") for input in func.flatten_inputs[::-1]: if input.name in resizer_input: # pyramid&resizer 只支持 NHWC 的 input layout,若原始输入layout为NHWC,则无需插入transpose node = input.insert_transpose(permutes=[0, 3, 1, 2]) # 插入前处理节点,具体可参考下一节的说明 node = node.insert_image_preprocess(mode=None, divisor=1, mean=[128, 128, 128], std=[128, 128, 128]) node.insert_roi_resize("nv12")
quantized_nv12.bc 与 quantized_feat.bc 推理结果差异显著
qat_nv12.bc 与 quantized_nv12.bc 推理结果一致性差
def generate_nv12(img): w,h = img.size # Convert images to YUV format yuv_img = img.convert('YCbCr') y_data, u_data, v_data = yuv_img.split() # Convert Y, U, and V channel data to byte streams y_data_bytes = y_data.tobytes() u_data_bytes = u_data.resize((u_data.width // 2, u_data.height // 2)).tobytes() v_data_bytes = v_data.resize((v_data.width // 2, v_data.height // 2)).tobytes() # Arrange the UV data in the form of UVUVUVUV... uvuvuv_data = bytearray() for u_byte, v_byte in zip(u_data_bytes, v_data_bytes): uvuvuv_data.extend([u_byte, v_byte]) # Input for the hbir model y = np.frombuffer(y_data_bytes, dtype=np.uint8).reshape(1, h, w, 1).astype(np.uint8) # np.save("y_data.npy", y) uv = np.frombuffer(uvuvuv_data, dtype=np.uint8).reshape(1, h//2, w//2, 2).astype(np.uint8) # np.save("uv_data.npy", uv) return y, uv
from hbdk4.compiler import load,compile,hbm_perf,visualize,save,convert import numpy as np from horizon_tc_ui.hb_runtime import HBRuntime def cosine_similarity(vec1, vec2): """计算两向量余弦相似度""" vec1_flat = vec1.flatten() vec2_flat = vec2.flatten() dot_product = np.dot(vec1_flat, vec2_flat) norm_vec1 = np.linalg.norm(vec1_flat) norm_vec2 = np.linalg.norm(vec2_flat) return dot_product / (norm_vec1 * norm_vec2) if (norm_vec1 * norm_vec2) != 0 else 0 def compare_noise_impact(float_model_path): """对比加噪前后浮点模型输出差异""" input_data = np.load("data.npy") # 添加0-2像素值范围的随机噪声 noise = np.random.uniform(0, 2, size=input_data.shape).astype(np.float32) input_data_noise = input_data + noise sess = HBRuntime(float_model_path) input_names = sess.input_names output_names = sess.output_names # 原始输入推理 input_dict = {input_names[0]: input_data} outputs_original = sess.run(output_names, input_dict) # 加噪输入推理 input_dict_noise = {input_names[0]: input_data_noise} outputs_noise = sess.run(output_names, input_dict_noise) # 计算相似度 return [cosine_similarity(orig, noise) for orig, noise in zip(outputs_original, outputs_noise)] # 执行验证 similarities = compare_noise_impact(float_model_path="float_model.onnx") for i, sim in enumerate(similarities): print(f"输出{i}余弦相似度: {sim:.6f}")
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。